73 research outputs found

    Modelling, analysis and design of MAC and routing protocols for wireless body area sensor networks.

    Get PDF
    The main contribution of the thesis is to provide modeling, analysis, and design for Medium Access Control (MAC) and link-quality based routing protocols of Wireless Body Area Sensor Networks (WBASNs) for remote patient monitoring applications by considering saturated and un-saturated traffic scenarios. The design of these protocols has considered the stringent Quality of Service (QoS) requirements of patient monitoring systems. Moreover, the thesis also provides intelligent routing metrics for packet forwarding mechanisms while considering the integration of WBASNs with the Internet of Things (IoTs). First, we present the numerical modeling of the slotted Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) for the IEEE 802.15.4 and IEEE 802.15.6 standards. By using this modelling, we proposed a MAC layer mechanism called Delay, Reliability and Throughput (DRT) profile for the IEEE 802.15.4 and IEEE 802.15.6, which jointly optimize the QoS in terms of limited delay, reliability, efficient channel access and throughput by considering the requirements of patient monitoring system under different frequency bands including 420 MHz, 868 MHz and 2.4 GHz. Second, we proposed a duty-cycle based energy efficient adaptive MAC layer mechanism called Tele-Medicine Protocol (TMP) by considering the limited delay and reliability for patient monitoring systems. The proposed energy efficient protocol is designed by combining two optimizations methods: MAC layer parameter tuning and duty cycle-based optimization. The duty cycle is adjusted by using three factors: offered network traffic load, DRT profile and superframe duration. Third, a frame aggregation scheme called Aggregated-MAC Protocol Data Unit (A- MPDU) is proposed for the IEEE 802.15.4. A-MPDU provides high throughput and efficient channel access mechanism for periodic data transmission by considering the specified QoS requirements of the critical patient monitoring systems. To implement the scheme accurately, we developed a traffic pattern analysis to understand the requirements of the sensor nodes in patient monitoring systems. Later, we mapped the requirements on the existing MAC to find the performance gap. Fourth, empirical reliability assessment is done to validate the wireless channel characteristics of the low-power radios for successful deployment of WBASNs/IoTs based link quality routing protocols. A Test-bed is designed to perform the empirical experiments for the identification of the actual link quality estimation for different hospital environments. For evaluation of the test-bed, we considered parameters including Received Signal Strength Indicator (RSSI), Link Quality Indicator (LQI), packet reception and packet error rate. Finally, there is no standard under Internet Engineering Task Force (IETF) which provides the integration of the IEEE 802.15.6 with IPv6 networks so that WBASNs could become part of IoTs. For this, an IETF draft is proposed which highlights the problem statement and solution for this integration. The discussion is provided in Appendix B

    Determining the Effect of Innovations for Mobile Banking Adoption in Pakistan

    Get PDF
    Mobile banking is the source of checking the daily banking affairs at anywhere, where the internet service is available. The main objective of this research was to check the impact of innovations on adoption of mobile banking in Pakistan. The research was based on primary data, which was collected from 500 students of all the public and private universities of Pothohar region (Islamabad/Rawalpindu) by means of a questionnaire. Random Sampling Technique was used and through SPSS the correlation analysis and regression analysis were calculated. The correlation analysis results showed that there is positive significant relationship between Innovations, with adoption of mobile banking in Pakistan. The regression analysis showed that the value of R square = 0.621, which means that the independent variable Innovation has 62%  effect on dependent variable  Mobile Banking Adoption. This research will helpful for banking sector and other related commercial organizations. Keywords: Innovations, Telecom Sector, Mobile banking, Pakistani Environment

    Impact of Risk and Ethics on Adoption of Mobile Banking in Pakistan

    Get PDF
    Mobile banking is information based one of the newly introduced digital banking services in Pakistan. The objective of this research was to analyze the impact of risk and ethics on consumer behavior towards adoption of mobile banking in Pakistan. This research was totally based on primary data, which was collected during the field survey through questionnaire from 500 students of private and public universities of Pothohar region (District Islamabad/Rawalpindi). The correlation and regression analysis was calculated by using SPSS software. The correlation results showed that there is insignificant relationship with Ethic, and significant relationship was found with Risk. The regression results showed thatR square = 0.621, which stated that the independent variables (Risk and ethis) have 62%  effect on dependent variable Mobile banking adoption and the model can predict the research results. So, ethic is main hurdle for mobile banking adoption. The findings are helpful for managers to reorganize their business plans to capture maximum latentbusinesses. Keywords: Telecom sector, Mobile banking Adoption, Risk, Ethics

    Factors Affecting Readiness for Business Process Reengineering-Developing and Proposing a Conceptual Model

    Get PDF
    In this paper researcher made an effort to suggest an approach to minimize risk of implementing Business Process Reengineering (BPR) initiatives by identifying certain factors crucial towards creating readiness for BPR. Lack of readiness is main factor behind high rate of BPR failures. Extensive literature review and interviews from the panel of experts provided sufficient background information. Leadership style, Information technology (IT), Top management commitment and collaborative working figured out as critical factors towards creating readiness. Regular leadership actions consistent with organizational environment, collaborative working, Information Technology and Top management commitment could promote coherence in organizational members' readiness perceptions. Assessing BPR readiness can address strong points, weak points and risks, and hence the ranking/level of readiness in the organization. Keywords: Business process reengineering, Business process readiness, Critical success factors, Organizational change

    A Vision of DevOps Requirements Change Management Standardization

    Full text link
    DevOps (development and operations) aims to shorten the software development process and provide continuous delivery with high software quality. To get the potential gains of DevOps, the software development industry considering global software development (GSD) environment to hire skilled human resources and round-the-clock working hours. However, due to the lack of frequent communication and coordination in GSD, the planning and managing of the requirements change process becomes a challenging task. As in DevOps, requirements are not only shaped by development feedback but also by the operations team. This means requirements affect development, development affects operations and operations affect requirements. However, DevOps in GSD still faces many challenges in terms of requirement management. The purpose of this research project is to develop a DevOps requirement change management and implementation maturity model (DevOps-RCMIMM) that could assist the GSD organizations in modifying and improving their requirement management process in the DevOps process. The development of DevOps-RCMIMM will be based on the existing DevOps and RCM literature, industrial empirical study, and understanding of factors that could impact the implementation of the DevOps requirement change management process in the domain of GSD. This vision study presents the initial results of a systematic literature review that will contribute to the development of maturity levels of the proposed DevOps-RCMIMM

    Quantum Software Engineering: A New Genre of Computing

    Full text link
    Quantum computing (QC) is no longer only a scientific interest but is rapidly becoming an industrially available technology that can potentially tackle the limitations of classical computing. Over the last few years, major technology giants have invested in developing hardware and programming frameworks to develop quantum-specific applications. QC hardware technologies are gaining momentum, however, operationalizing the QC technologies trigger the need for software-intensive methodologies, techniques, processes, tools, roles, and responsibilities for developing industrial-centric quantum software applications. This paper presents the vision of the quantum software engineering (QSE) life cycle consisting of quantum requirements engineering, quantum software design, quantum software implementation, quantum software testing, and quantum software maintenance. This paper particularly calls for joint contributions of software engineering research and industrial community to present real-world solutions to support the entire quantum software development activities. The proposed vision facilitates the researchers and practitioners to propose new processes, reference architectures, novel tools, and practices to leverage quantum computers and develop emerging and next generations of quantum software

    Delay, Reliability, and Throughput Based QoS Profile: A MAC Layer Performance Optimization Mechanism for Biomedical Applications in Wireless Body Area Sensor Networks

    Get PDF
    Recently, increasing demand for remote healthcare monitoring systems poses a specific set of Quality of Services (QoS) requirements to the MAC layer protocols and standards (IEEE 802.15.6, IEEE 802.15.4, etc.) of Wireless Body Area Sensor Networks (WBASNs). They mainly include time bounded services (latency), reliable data transmission, fair channel distribution, and specified data rates. The existing MAC protocols of WBASNs are lack of a specific set of QoS. To address this, the paper proposes a QoS profile named delay, reliability, and throughput (DRT). The QoS values computed through DRT profile provide maximum reliability of data transmission within an acceptable latency and data rates. The DRT is based on the carrier sense multiple access with collision avoidance (CSMA/CA) channel access mechanism and considers IEEE 802.15.4 (low-rate WPAN) and IEEE 802.15.6 (WBASN). Further, a detailed performance analysis of different frequency bands is done which are standardized for WBASNs, that is, 420 MHz, 868 MHz, 2.4 GHz, and so forth. Finally, a series of experiments are conducted to produce statistical results for DRT profile with respect to delay, reliability, and packet delivery ratio (PDR). The calculated results are verified through extensive simulations in the CASTALIA 3.2 framework using the OMNET++ network simulator

    IEEE 802.15.4 Frame Aggregation Enhancement to Provide High Performance in Life-Critical Patient Monitoring Systems

    Get PDF
    In wireless body area sensor networks (WBASNs), Quality of Service (QoS) provision for patient monitoring systems in terms of time-critical deadlines, high throughput and energy efficiency is a challenging task. The periodic data from these systems generates a large number of small packets in a short time period which needs an efficient channel access mechanism. The IEEE 802.15.4 standard is recommended for low power devices and widely used for many wireless sensor networks applications. It provides a hybrid channel access mechanism at the Media Access Control (MAC) layer which plays a key role in overall successful transmission in WBASNs. There are many WBASN’s MAC protocols that use this hybrid channel access mechanism in variety of sensor applications. However, these protocols are less efficient for patient monitoring systems where life critical data requires limited delay, high throughput and energy efficient communication simultaneously. To address these issues, this paper proposes a frame aggregation scheme by using the aggregated-MAC protocol data unit (A-MPDU) which works with the IEEE 802.15.4 MAC layer. To implement the scheme accurately, we develop a traffic patterns analysis mechanism to understand the requirements of the sensor nodes in patient monitoring systems, then model the channel access to find the performance gap on the basis of obtained requirements, finally propose the design based on the needs of patient monitoring systems. The mechanism is initially verified using numerical modelling and then simulation is conducted using NS2.29, Castalia 3.2 and OMNeT++. The proposed scheme provides the optimal performance considering the required Qo

    Cadmium toxicity alleviation through exogenous application of gibberellic acid (GA3) in mustard (Brassica juncea (L.) czern.) and rapeseed (Brassica rapa L.)

    Get PDF
    An experiment was carried out by considering adverse impact of heavy metals on human health through consumption of crops. To alleviate the adverse effects of cadmium (Cd) toxicity through foliar application of gibberellic acid (GA3), two varieties of Brassica including Indian mustard (Brassica juncea (L.) Czern.) commonly known as ‘Raya’ and rapeseed (Brassica rapa L.) as ‘Toria’ were studied. The Completely Randomized Design (CRD) was used with eight treatments including control in four replicates. Treatments were as following, T0 (control), T1 (150 μM CdCl2), T2 (50 mg/L GA3), T3 (75 mg/L GA3), T4 (100 mg/L GA3), T5 (150 μM CdCl2 + 50 mg/L GA3), T6 (150 μM CdCl2 + 75 mg/L GA3), and T7 (150 μM CdCl2 + 100 mg/L GA3). Gibberellic acid (GA3), a plant growth regulator applied exogenously. The concentration of cadmium (150 μM CdCl2) resulted in Cd toxicity affected adversely the morphological and biochemical parameters. Foliar application of GA3 (50 mg, 75 mg and 100 mg) positively influenced the various growth parameters as root length (30 cm), shoot length (129.75 cm), number of leaves (14.5), pods per plant (88) and biochemical parameters like total chlorophyll (0.19 mg/g), protein content (0.70 mg/mL), carbohydrates (0.37 mg/mL) and CAT (0.56 units/mg). Outcome indicated that GA3 reduces the harmful effects of Cd stress in both varieties. It was concluded that all growth and yield parameters of variety ‘Raya’ were better as compared to variety ‘Toria’, hence Raya recommended for large scale cultivation with GA3 under Cd stress

    Consequences and Mitigation Strategies of Heat Stress for Sustainability of Soybean (<em>Glycine max</em> L. Merr.) Production under the Changing Climate

    Get PDF
    Increasing ambient temperature is a major climatic factor that negatively affects plant growth and development, and causes significant losses in soybean crop yield worldwide. Thus, high temperatures (HT) result in less seed germination, which leads to pathogenic infection, and decreases the economic yield of soybean. In addition, the efficiency of photosynthesis and transpiration of plants are affected by high temperatures, which have negative impact on the physio-biochemical process in the plant system, finally deteriorate the yield and quality of the affected crop. However, plants have several mechanisms of specific cellular detection of HT stress that help in the transduction of signals, producing the activation of transcription factors and genes to counteract the harmful effects caused by the stressful condition. Among the contributors to help the plant in re-establishing cellular homeostasis are the applications of organic stimulants (antioxidants, osmoprotectants, and hormones), which enhance the productivity and quality of soybean against HT stress. In this chapter, we summarized the physiological and biochemical mechanisms of soybean plants at various growth stages under HT. Furthermore, it also depicts the mitigation strategies to overcome the adverse effects of HT on soybean using exogenous applications of bioregulators. These studies intend to increase the understanding of exogenous biochemical compounds that could reduce the adverse effects of HT on the growth, yield, and quality of soybean
    • …
    corecore